
Harmonic oscillator with strongly pulsating mass

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1982 J. Phys. A: Math. Gen. 15 1549

(http://iopscience.iop.org/0305-4470/15/5/016)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 06:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/15/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 15 (1982) 1549-1559. Printed in Great Britain 

Harmonic oscillator with strongly pulsating mass 

R K Colegrave and M Sebawe Abdalla 
Chelsea College, Manresa Road, London SW3 6LX, UK 

Received 31 July 1981, in final form 17 November 1981 

Abstract. An exact solution is presented for the problem of a harmonic oscillator of 
frequency wu and mass varying with time according to M = M O  cos2 vi. The solution is 
closely related to that of an oscillator of constant mass MO and frequency v 2 ) ’  ’. 
Pseudostationary and quasi-coherent states are discussed. Applications in quantum optics 
are foreseen. 

1. Introduction 

The problem of the damped harmonic oscillator has received much attention over the 
past decade (Louise11 1973, Hasse 1975, Dodonov and Man’ko 1979). This problem 
can be regarded as one in which the mass of the oscillator changes exponentially and 
some authors have considered the idea of a more general change of mass with time 
(Dodonov and Man’ko 1979, Remand and Hernandez 1980). The present authors 
have suggested a new approach (Colegrave and Abdalla 1981a, b) in which time- 
dependent canonical transformation theory is invoked to transform the variable mass 
oscillator to the standard constant mass form. The case of exponentially changing 
mass (Colegrave and Abdalla 1981b, hereafter referred to as I) is the simplest case, 
the time dependence of the mass M = M O  exp(-2yr) being transformed away immedi- 
ately since the fluctuation function 

(1.1) 

is constant. A time-free Hamiltonian remains which is readily reduced to diagonal 
form, leaving a constant mass harmonic oscillator of reduced frequency U, where 

(1.2) 

as shown in I. 
We can now report a second and perhaps more interesting solvable case in which 

the mass is a periodic function of the time as discussed in 4 2. Here the Hamiltonian 
has been reduced by a further time-dependent canonical transformation to that for a 
harmonic oscillator of constant mass and frequency R given by 

(1.3) 

where Y is the frequency of M1’2(r). Again the time dependence of the solution 
resides solely in the canonical transformations. 

The order of presentation is similar to that adopted in I. We start in (i 3 with the 
discovery of a solution of the Schrodinger equation. After a consideration of the 

y d t )  = (1/2M) dM/dt = - y  

2 2 2  w = w o - y  

R2 = w: + 2 
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Heisenberg equations in 0 4 and a discussion of the energy in P 5 ,  we are able to make 
the correct definition of the Dirac operator A l ( t )  in 0 6, leading to the time-dependent 
diagonalising transformation in 0 7. In the final sections we discuss the Green function, 
quasi-coherent states and the possibility of solving this type of problem entirely in 
the Schrodinger picture. 

2. The mass law M = MO cos2 yf 

As discussed elsewhere (Colegrave and Abdalla 1981a), the electric and magnetic 
field intensities in a Fabry-Perot cavity are proportional to M1'*(t), where M ( t )  is 
the variable mass parameter in the harmonic oscillator Hamiltonian. Hence the mass 
law 

(2.1) 

describes a harmonically varying field intensity, a situation which could ideally arise 
(Kumar and Mehta 1981). Although the mass is never negative it would be even 
better to avoid its periodic vanishing, but a modification of equation (2.1) to this end 
leads to awkward analysis and any hope of an exact solution is lost. However, we 
encounter no mathematical difficulty since M + 0 periodically. 

M'/ ' ( t )  = MAJ2 cos ut 

3. Solution of the Schrodinger equation 

As described in I,  we transform the variable mass Hamiltonian 

H ( t )  = i p 2 / M ( t )  + &f(t)w;q2, [q, PI = ih, (3.1) 

via the canonical transformation 

40 = [M(~)/Mo11/2q, Po = [Mo/M(t)l ' /2p,  (3.2) 

to a form in which the time dependence is concentrated in the fluctuation function 
yo( t )  defined in equation (1.1). The new Hamiltonian is 

Ho(t) = t p : / M o + I M ~ w ~ q ~ + t Y o ( t ) ( 4 o P o + P o 4 o ) ,  [qo ,  Pol = ih. (3.3) 

For the mass law (2.1) the transformation (3.2) is 

q o  = q cos ut, p o  = p sec ut, 

with 

yo ( [ )  = -U tan vt. 

The Schrodinger equation corresponding to the Hamiltonian (3.3) is 

(3.4) 

(3.5) 

Pseudostationary or quasi-periodic solutions (Gesztesy and Mitter 198 1) exist of the 
form (we revert to the physical coordinate q by the transformation (3.4)) 

W, t )  exp[-iW +it], 1 = 0 , 1 , 2  , . . . ,  (3.7) 
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where 

$/(q, t )  = ~ / ( t ) ~ , ( [ ~ ( t ) ~ / h ] ” ’ q )  exp[-M(t)(R- iv tan vt)q2/(2h)I, (3.8a) 

(3.8b) 

and R is the augmented frequency given by equation (1.3). It is interesting to compare 
$,(q, t )  with the following damped solution obtained by Hasse (1975) and Tartaglia 
(1977) and which the present authors obtained in I: 

(3.9) 

where N,(r) is given by equation (3.86) with M(t)=Moexp(-2yt).  Like (3.9), our 
present solution (3.7) remains normalised in the original physical coordinate q at all 
times, except at the instants when M = 0. At these times II, = 0. We notice that (3.7) 
may be obtained from (3.8) by replacing the reduced frequency w by the augmented 
frequency R, the constant damping factor y by the function - yo=  v tan vt and the 
damped mass by the pulsating mass. We hasten to add that this extension is not true, 
as far as we can see, for any other mass law. For instance, consider as a generalisation 
of the law (2.1) 

N/ ( t = [ M  ( t R/ ( r h)] ’ I4 ( 2 ‘1 ! 1- ’ /’ 

$/(q, t )  = ~ , ( t ) ~ , ( [ ~ ( t ) w / h I ~ ” q )  exp[-M(t)(w - i ~ ) q ’ / ( ~ l ,  

M ( t )  = M O  cos“ vt, 

yo(t) = -vn tan v t ;  
so that 

(3.10) 

(3.11) 

then it may easily be seen that an extension of the wavefunction (3.9) of the type 
(3.7) is true only for the case n = 2. 

Let us write, as in I, 

T=’ P 2 / M ( r )  = t p ; / ~ ~ ,  v = $M(t)&q’ = tMo&q;. (3.12) 

The matrix elements of T, V and Hfl may be calculated with respect to the states 
(3.8) and we obtain 

(11 Vll’) =ah(wc:/n){(21+ l)S, , ,+[(I+ 1)(1 +2)]1/2S,.,.-2+[(1’+ 1)(1’+2)]’/2S,-*,,,}, 

( / IT]/’)  = $hn(/ +$)[I + (v/n)’ tan’ v t ] ~ ~ ~ ~  

(3.13a) 

-$in[(/ + I ) ( /  + 2)]’/’[1 - 2 i ( v / ~ )  tan vt - (v/R)’ tan’ v ~ ] s / , , ~ - ~  

+$IO[(/‘+ I)(/‘  + 2)]’/’[1+2i(v/~) tan vt - (v /n) ’  tan’ v~]s , -~, , , ,  
(3.13b) 

(lIHoll’> = hR(1 +$)[l -$(v/R)’sec’ vf]SII. 

- i f i ( v ’ /n )  sec’ v t { [ ( l+  I ) ( /  + 2)1’/’~,,/,-2 + [ ( v  + I)(/’  + 2)I’’2~,-2,/,}. 
( 3 . 1 3 ~ )  

We notice that (ll V11’) is time independent and equal to w o / R  times the value for an 
oscillator with constant mass: 

(3.14) (11 W’> = (wo/W( l l  VI%f=Mo. 

Also, on letting v + O  so that R+wf l ,  equation (3.136) gives the correct value for 

( l I T I l ‘ ) M = M , ,  =ihwo{(21+ l)S,,,-[(l+ 1 ) ( 1 + 2 ) ] ’ ~ 2 6 , , , ~ - 2 - [ ~ 1 ’ +  1)(1‘+2)]*~*S/-Z,,,}. 
(3.15) 
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The expectation values of V, T, q p  + p q  and Ho in the state cli, are 

(11 VI/) = thn(w”/n)*(r + t ) ,  ( 3 . 1 6 ~ )  

(3 .166)  

( 3 . 1 6 ~ )  

( 3 . 1 6 d )  

At times t = n r / u ,  n = 0,  1 , 2 ,  . . . when M =MO,  the expectation values of T + V and 
Ho are equal: 

(3 .17 )  

It is interesting to compare the results (3 .16a ,  b )  with the expectation values of T 
and V for the case of decaying mass considered in I, where both expectation values 
are equal and time independent, 

(1IT + V/l)min = (llH()ll)max = hR[1 - t(u/R)’](l + f). 

(11 Vl f )  = (l /TIl)  = fhw(w() /w)’ ( l  +$), 

w being the reduced frequency given by equation (1 .2 ) .  These values, together with 
the other results obtained in I 

(llqp+pqll)= 2 h ( Y l N + i ) ,  ( I /Kl l )= h w ( l + i ) ,  

follow from equations (3 .16 )  on making the replacements 0- w, y tan v f  + y. 

4. Solution of the Heisenberg equations 

Using the Hamiltonian given by equations (3 .3 )  and ( 3 . 5 )  

(4 .1 )  H - ’  2 
0 - m / ~ ( ~ + t ~ w & d - t v  tan ur(qOpO+pOqo), 

we find the quantum or classical equations of motion 

dqoldr = P O / M O  - v q ~  tan ut, 

or 

dpo/dt = up, tan ut -Mowiq,,, ( 4 . 2 ~ )  

40 + R’q, = 0 ,  i jO + (n’ - 2u’ sec’ ut)po = O. ( 4 . 2 b )  

Equations ( 4 . 2 ~ )  are the same as in I with y -, U tan ut, and 0, P replaced by qO, pO. This 
identification is lost in equations ( 4 . 2 b ) .  On reverting to the original coordinate and 
momentum by the transformation ( 3 . 4 )  and using the variable mass, the solutions of 
equations ( 4 . 2 )  are 

(4 .3a  1 q ( t )  = q(0 )  sec vt cos Rt +p(O) cos ut sin n t / [ R M ( t ) ] ,  

p ( t )  = p ( 0 )  cos vr[(u /R)  tan vt sin Rt +cos Rr] 

+q(O)RM(t)  sec v t [ ( v /R)  tan ut cos Rt-sin Rt]. ( 4 . 3 6 )  

The result ( 4 . 3 ~ )  is especially simple, being the constant mass equation with M,,+ M ( t ) ,  
as we recognise when we write it in the form 

( 4 . 3 c )  

which is actually simpler than the corresponding result ( 4 . 3 ~ )  in I. This is because 

q d t )  = qdo)  cos Rt + (pdO)/nMd sin Or, 
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yo(0) = 0. Not surprisingly, each of the expressions (4.3a, b )  becomes infinite whenever 
M = 0 .  

From equations (4.3a, b) ,  or directly from the Heisenberg equations, we find the 
following expressions for V(t) and T(r ) :  

v(r) = ( W " / O ) ~ T ( O )  sin2 nt+ V(O) cos2 Rt + ; (w( : /n ) [q (o ) ,  p(0)1+ sin nt cos at, 

Ti t )  = ( n / w 0 l 2  v(o)[(v/n) tan vt cos nt -sin nt12 

(4.4a) 

+ T ( o ) [ ( ~ / o )  tan vt sin f i t  +COS nt12 
+;n[q(o), p(o)] , [ (v /n)  tan vt cos Rt -sin at] 
x [( v/R) tan vt sin nt +sin n t ] .  (4.46) 

Adding these, we obtain 

We may easily check that the expectation values (3.16~2, b )  follow from (4.4a, b ) .  
We remarked in 3 that the expectation values (3.16) could be obtained from the 
corresponding expressions in I by the replacement w + n, y + v tan vt. This does not 
apply for the expressions (4.44 6). 

5. The energy operator 

A classical analogue of the system described by equations (2.1) and (3.1) consists of 
a particle of mass M ( r )  attracted to q = 0 by a force M(t)w(:q.  The mass given by 
equation (2.1) may be supposed periodically to condense from and return to a dust 
cloud at rest. The equation of motion is 

(5.1) 2 4 - 2 v  tan vtcj+ooq=O, 

or, with qo = q cos vt as in equation (3.4), 

40 + (U(:  + v2)q,,  = 0.  ( 5 . 2 )  

This agrees with the Heisenberg equation given in (4.2). 
Since the force field is that for the constant mass harmonic oscillator multiplied 

by the factor cos2 vt, we may conclude that the energy of the classical or quantum 
system is also multiplied by this factor, i.e. 

(5.3) 

Alternatively, we may arrive at this definition of the energy operator by considering 
the classical energy of a cavity field, as in I. Equation (5.3) is a natural extension of 
the definition of the energy in the case of a decaying oscillator (Hasse 1975, Tartaglia 
1977). We see from equations (3.16a, 6)  and (5.3) that the expected value of the 

E = COS' vt( T + V). 
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energy is always finite; thus 

(IIEll) = hR[cos2 v f  - i (v /n )2  cos 2vt](l+;).  (5.4) 

Maximum values occur at times when M =MO, 

(Eh” = fiw - t ( J ” I ( 1 f  9, ( 5 . 5 ~ )  

and minima occur whenever M = 0, 

(E)ml” = ihn(v/nI2(l +;,. (5.5b) 

An interesting relation follows from equation (3.166) as wo+O, when we obtain 

(5.6) 

for a free pulsating particle 

d( T)o/dt = 2v tan vt( T),,, 

which integrates immediately to give 

(T( t ) )o  = (T(0))o sec2 vt. (5.7) 

Equation (5.6) can be compared with Hasse (1975, equation (2.9)) with y + v tan vf.  
Our result (5.7) coupled with equation (5.3) ensures conservation of energy for the 
free pulsating particle. 

6. Dirac operators 

( 6 . 1 ~ )  

(6.lb) 

give rise to Dirac operators in the usual manner: 

(Qo - P o ) .  (6.2) Ao=2-’/2(Qo+iPo), Ah = 2-‘/2 

Equation (3.3) may be written 

Ho = $ A W ~ ( Q ;  + 6) - thu tan vt(QOP0 + ~ 0 ~ 0 )  ( 6 . 3 ~ )  

= hwO(A:)Ao+;)-$ihv tan vr(Ah2-A;). (6.36) 

Let us introduce an explicitly time-dependent operator 

Al( t )  = (2MoOh)-’/2[Mo(fl-iv tan vt)qo+ipo] ( 6 . 4 ~ )  

or, in terms of the original physical coordinate and momentum and the actual mass, 

(6.4b) A,( t )  = [2M(t )nh]-”2[M(r) (n- iv  tan vt)q +ip]. 

Obviously A , ( [ )  and its adjoint satisfy the canonical relation 

[Ai({), A l ( t ) I =  1,  (6.5) 

and from the Heisenberg equations (4.3) it easily follows that 

Al(t)=Al(O) exp(-iflr), AT(t) = A:(O) exp(iflr). (6.6) 



Harmonic oscillator with strongly pulsating mass 1555 

HO may be expressed in terms of A I ,  A: in the form 

Ho= hR(A:Al +$)-ah(r2/R) sec2 vt(Al +A:)2 (6.7) 

or, on introducing a new dimensionless coordinate Q1 and momentum PI according 
to 

Q1 = 2-’/’(A1 + A i ) ,  iP, = 2-’/’(A -Ai) ,  (6.8) 
we may write 

Ho=$hR(Q:+P:)-qh(v2/R) Sec’vtQ:. (6.9) 

We note that Ho is not the canonical Hamiltonian in the variables Q1 and PI. This 
will be found in 0 7. 

7. The diagonalising transformation 

The canonical transformation (Ao, A:) -P (A A:) described by equations (6.11, (6.2) 
and (6.4) is equivalent to (Qo, Po)+ (Q1, PI), where 

( 7 . 1 ~ )  

On referring back to the physical coordinate 4 and momentum p, the transformation 
becomes 

In the notation of Goldstein (1980), the generating function is 

pl, t )  = M w O )  tan vtQ5 + t ( f i / w , . ~ ’ / ’ ( ~ o ~ 1 +  P I Q O ) ,  (7.2) 

and the new canonical Hamiltonian is 

Hl (Q1,  PI, t )=Ho(QI,  PI, r)+h3F2/3t9 

H~ = $ ~ R ( Q ?  +P:) - t ( v 2 / 0 )  sec’ vtQ? + t h ( v 2 / w o )  sec2 vtQk 

(7.3) 

i.e. we must add the term h3FJdt to the expression given in equation (6.9). Thus 

(7.4) 

When we recall that by equation (7 . la )  Q1 = (R/~O)’’’QO, we see that the last two 
terms in equation (7.4) cancel and we are left with the remarkably simple result 

(7.5) 

The original problem (3.1) is thus solved by applying the transformation (7.lb) to the 
solution of the time-free system (7.5). 

8. The Green function 

Since the Heisenberg equation ( 4 . 3 ~ )  is exactly the same as for constant mass with 
W O  + R, the Green function in 40 is closely related to the usual constant mass expression; 
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thus with normalisation over (-CO, a) in qo 

+(v/n) tan utsin ntq l :  -2qoq;)l). (8.1) 

An extra term has appeared in the exponent owing to the asymmetry of equations 
(4.3aJ). We note that in equation (8.4) in I the coefficient of Qi in the exponent should 
be cos ut + ( y / w )  sin ur (cf Landowitz et al 1979), also we note that in I the Green 
function G(Q, Qo, t ) ,  like the wavefunction (Cl,(Q) was normalised in Q rather than the 
physical coordinate q. 

Changing to the physical coordinate q by the transformation (3.2) and using a 
normalisation over (-00, 00) in q, we may rewrite equation (8.1) in the form 

+ ( v / ~ )  tan vt sec’ vt sin Rtq”- 2qq‘sec vt]) 

where q’ = q(0) .  

(8.2) 

9. Quasi-coherent states 

The well known harmonic oscillator theory holds in the representation (7.5). For 
instance, number states 11) exist which give rise to the pseudostationary states h ( q ,  t )  = 
(411) considered in 5 3. Again, coherent states may be constructed which satisfy 

A i ( t ) iat)  = a(t)Iat), (9 . l a )  

where by equation (6.6) 

a ( t )  = a ( 0 )  exp(-iRt). (9.16) 

Equations (4.3) and (9.1) give the expectation values and uncertainties 

(atlq(t)lar) = [ h / ( 2 ~ ~ n ) ] ’ / ’ [ a ( t )  + a*(t)] sec vt, ( 9 . 2 ~ )  

(arlp(t)lat)= (hM~l~/2)”2{(v/~)[a(t)+a*(t)]sin vt-i[a(t)-a*(f)]cos vt}, (9.2b) 

( 9 . 2 ~ )  

(9.2d) 

We note that the uncertainty in q is infinite whenever M = 0, but the uncertainty in 
p is always finite. The product of uncertainties is 

(9.3) 

Coherence is lost to some extent whenever M f MO, but as it is periodically regained 
we may refer to the solutions of equation (9.1) as quasi-coherent states. 

In the Schrodinger representation the quasi-coherent state equation (9.1) becomes 

A q ( t )  = [h/(2M0n)]’/’ sec vt, 

A p ( t )  = (hM0fl/2)’/2[(v/fl)2 sin’ vf + cos’ vt]”’. 

AqAp = !h[l+ (v/n)’ tan’ vf]”’. 
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- M(r)v  tan vt((a / q ~ a )  - i411). (9.6) 

where (alqla) and (alpla) are given by equations (9.2a,b).  Thus the coordinate 
distribution has the usual form 

(9.7) 

i.e. a Gaussian of half-width Aq, centred at q =(alq /a) ,  but here Aq and ( a / q / a )  vary 
with the time according to equations (9.2~1, c). The connection with the pseudostation- 
ary states (3.8) is, as discussed by Dodonov and Man’ko (1979), 

2 - 1 / 2  
/cL,(q, t)I2 = [27dAq) 1 exp[(q -(&/a))2/2(Aq)21, 

(9.8) 

10. The connection between the Schrodinger q and Q1 representations 

We recall that in B 3 we defined q ~ =  q cos vt and in B 6 Q ~ = ( M o w o / h ) ” ~ q ~ .  The 
solutions (qoll) of the Schrodinger equation (3.6) are trivially transformed to the 
solutions of the equation 

(10.1) 

In 5 7 we defined Q1 = (n /wo) ”2Qo and at first sight it might appear that the connection 
between the wavefunctions (Qlll) and ( 0 0 1 1 )  is also trivial. However, this is not the 
case since (Ql/l) satisfies the very different Schrodinger equation associated with 
equation (7.5): 

(10.2) 

To change from (10.1) to (10.2) we have to follow through the transformation theory 
of B 7. From equation ( 7 . 1 ~ )  

(10.3) 

t [ ( w o / n ) ( ~ i  - a 2 / a G )  + i (v /n )  tan v t ( 2 ~ 0 a / a ~ o +  ~ ) I ( Q [ I I O  = ( l  + & Q ~ / o .  

tea: - a2/aQ:)(Q1 ll) = (1 +t,co, 10. 

-ia/aQ1 = -v tan v t ( n w O ) - 1 / 2 Q l )  + (wo/n)’/*(-ia/dQo). 

Using equations (7.3) and (10.3), we may change the Hamiltonian 

H1 = fhn(Q: - a2/dQ:) (10.4) 



1558 R K Colegrave and M Seba we Abdalla 

of equation (10.2) into the form 

needed for equation (10.1). If future solvable time-dependent problems are forthcom- 
ing, we could perhaps avoid solving complicated Schrodinger equations by transform- 
ing the constant mass harmonic oscillator wavefunctions (Q1 / /)  directly using 

(10.6) 

However, it is not at all easy to see how to calculate the kernel functions ( Q o l Q l )  
directly from canonical transformation equations of the type (7.1). 

11. Conclusion 

The most significant effect of pulsating mass in a harmonic oscillator is to change the 
natural frequency wo to an effective frequency R given by equation (1.3). This effective 
frequency follows from the solution in I by the replacement y + iR, causing w + R, w 
being given by equation (1.2). For the wavefunction and expectation values given in 
Q 3 the replacement y +  U tan ut is necessary in addition to o +R.  However, we see 
that any such algebraic replacement is inadequate to describe the underlying dynamics 
as exhibited in the Heisenberg equations and their solutions in § 4 .  On the other 
hand, the Green function originating in a delta function distribution at t = 0 is the 
constant mass result with an extra oscillatory exponential factor. Also we have shown 
the existence of quasi-coherent states which periodically return to minimum uncer- 
tainty wavepacket solutions. 

The comparisons which we are able to make with the work of Dodonov and Man’ko 
(1979) are pleasing. These authors employed a mass of the type MO exp[2r(r)] and our 
work can be regarded as an analytic continuation of the form r(t) + iut, but by using real 
mass we have avoided any difficulties that might arise from a non-Hermitian 
Hamiltonian. 

We have put forward in equation (5.3) a definition of the energy operator which 
is justified by the consideration of a classical analogue. This ensures conservation of 
the energy of a free pulsating mass. In $ 5  3, 4 we have given separate results for T 
and V (essentially the kinetic and potential energies) because we think it is interesting 
to see how V depends on v only through R, whereas T takes up a stronger dependence 
on v. 

We remarked in 9 3 that there is no obvious extension of our solution for another 
power of cos ut in the mass law (2.1). We should prefer a gentler variation of mass 
with time that avoids the periodic M + 0 .  Whether it is possible to reduce further 
problems to a time-free representation of the form (7.5) is an open question. If it is 
possible, then our remarks below on possible applications became even more cogent. 
Perhaps we cannot expect the simplicity of the present solution to be repeatable. 
Further progress may have to depend on approximate and numerical methods 
(Colegrave and Abdalla 1982). 

This second solvable case of a harmonic oscillator with mass varying according to 
equation (2.1) is certainly no less important than the first case of exponentially varying 
mass reported in I. We hope that the term pulsating mass may stimulate some possible 
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applications. Our particular interest is in laser-driven or laser-producing cavities 
(Colegrave and Abdalla 1981a), and we feel that the present solution and possible 
future extensions could be of paramount importance in quantum optics and perhaps 
in other branches of physics including solid state physics and quantum field theory. 
The Heisenberg solution in 0 4 is formally the same as the classical solution, and as 
such it could have applications in the classical regime. 

References 

Colegrave R K and Abdalla M S 1981a Optica Acta 28 495-501 
- 1981b J. Phys. A :  Math. Gen. 14 2269-80 
- 1982 Optica Acta to appear 
Dodonov V V and Man’ko V I 1979 Phys. Rec. A 20 550-60 
Gesztesy F and Mitter H 1981 1. Phys. A :  Marh. Gen. 14 L79-83 
Goldstein 1980 Classical Mechanics (Reading, Mass: Addison-Wesley) p 383 
Hasse R W 1975 J .  Math. Phys. 16 2005-11 
Kumar S and Mehta C L 1981 Phys. Rc:>. 24 1460-68 
Landowitz L F, Levine A M and Schreiber W M 1979 Phys. Rev. 20 1162-8 
Louise11 W H 1973 Quantum Statistical Properties of Radiation (New York: Wiley) p 332 
Remaud B and Hernandez 1980 J. Phys. A :  Math. Gen. 11 939-48 
Tartaglia A 1977 Lett. Nuooo Cimento 19 205-9 


